
An Introduction to Vuo

Vuo 0.4.2

Contents

1 Vuo and You 3

2 Quick start 3

2.1 Install Vuo . 3

2.1.1 The easy way: Getting the Vuo package 4

2.1.2 The hard way: Building Vuo from source code 4

2.2 Create a composition . 4

2.3 Run the composition . 4

2.4 Export the composition to a standalone executable 4

1

Contents Page 2 of 20

3 Making compositions 5

3.1 Nodes . 6

3.1.1 Interacting with the environment 6

3.1.2 Storing information . 6

3.2 Ports and cables . 7

3.2.1 Firing events . 7

3.2.2 Passing data and events between nodes 7

3.2.3 Setting a constant value for a port 8

3.2.4 Using the default value of a port 9

3.3 Conducting events . 9

3.3.1 The receptor port . 10

3.4 Controlling when nodes execute . 11

3.4.1 Switches . 11

3.4.2 Feedback loops . 11

3.4.3 Executing nodes in parallel . 12

3.4.4 Executing nodes in the background 13

3.4.5 Executing nodes at a steady rate 14

3.5 Creating and running compositions with the Vuo Editor 14

3.5.1 Drawing nodes and cables . 15

3.5.2 Running and stopping a composition 15

3.5.3 Exporting compositions . 16

3.6 Creating compositions with a text editor and running them with a shell 16

3.6.1 Writing a composition in a text editor 16

3.6.2 Rendering a composition on the command line 17

3.6.3 Building a composition on the command line 18

3.6.4 Running a composition on the command line 18

3.6.5 Running a composition inside a C/C++/Objective-C program 19

3.6.6 Dynamically compiling and running compositions inside a
C/C++/Objective-C program 19

Revised June 29, 2013

2 Quick start Page 3 of 20

4 Adding node classes to your Node Library 19

4.1 Installing a node class . 20

4.2 Creating a node class in the Vuo Editor 20

1 Vuo and You

Vuo is an environment for creating interactive multimedia software. It’s designed for
multimedia artists and other creative people who want to combine graphics, audio,
special effects, and interactivity into unique compositions.

Making a Vuo composition is easy. You drag and drop building blocks (“nodes”) onto
the canvas. You draw lines (“cables”) to connect them. Then you hit the Run button.
See, hear, and interact with your composition.

Learning Vuo is easy. Just master one simple concept: information flowing through
cables. (In case you were wondering, “Vuo” is the Finnish word for “flow”.) The Vuo
website provides tutorials, examples, and forums to help you learn.

With Vuo, you can. . .

• Modify your composition while it’s running – perfect for experimentation and
live improvisation.

• Build apps for iOS, Mac, Windows, and Linux.
• Make your own reusable, shareable nodes.
• Embed your composition inside other software.

Welcome to Vuo. Soon you’ll be able to create interactive art and music, animations,
visualizations, games, special effects, and more.

2 Quick start

2.1 Install Vuo

TODO (build, website): how to download and install Vuo

Revised June 29, 2013

2 Quick start Page 4 of 20

2.1.1 The easy way: Getting the Vuo package

2.1.2 The hard way: Building Vuo from source code

2.2 Create a composition

TODO (editor): screenshots

Let’s make a simple composition. It will just pop up a window with the text “Hello
World!”

1. Open the Vuo Editor application in your Applications folder.
2. Go to File > New Composition. This opens a blank canvas.
3. Go to Window > Show Node Library. This shows all the nodes that are avail-

able to you.
4. In the Node Library, find the Fire on Start node. Drag it onto the canvas.
5. In the Node Library, find the Display Console Window node. Drag it onto

the canvas.
6. Draw a cable from the started port of the Fire on Start node to the receptor

port of the Display Console Window node.
7. Double-click on the lineToWrite port of the Display Console Window node.

This pops up a text box.
8. Type “Hello world!” in the text box and hit Return. This closes the text box.

2.3 Run the composition

TODO (editor): screenshots

Now let’s run your composition.

1. Click the Run button (or go to Run > Run).
2. When you’re finished admiring the “Hello world!” text, click the Stop button

(or go to Run > Stop).

2.4 Export the composition to a standalone exe-
cutable

TODO (export): how to export a composition

Revised June 29, 2013

3 Making compositions Page 5 of 20

3 Making compositions

This is a composition that writes the numbers 1, 2, 3, 4, . . . to the console, one
number every second. Let’s look at the composition one piece at a time.

Fire Periodically, Count, Convert Integer to Text, and Write to Console are
nodes. Each node does some work and sends the result to the next node through
cables connected to the nodes’ ports.

A node in Vuo is analogous to
a patch in Quartz Composer.
Unlike Quartz Composer, which
typically executes each patch
once per video frame, nodes in
Vuo can be executed whenever
they receive an event — whether
it’s 60 per second, 44,100 per
second, or 1 per year.

Note for
Quartz Composer users

A node in Vuo is analogous to
a class instance method that
takes a list of inputs and returns
a list of outputs.

(); Note for
text programmersThe Fire Periodically node fires an event every 1 second. It sends that event out

its fired port, then along the cable to the Count node’s increment port.

When the event from the Fire Periodically node hits the Count node, it’s Count’s
turn to execute. The Count node keeps track of a count. When an event hits its
increment port, the node adds 1 to its count. The count starts out at 0, becomes
1 after the first event, 2 after the second event, and so on. The Count node sends
the new count and the event out its count port, along the cable, to the Convert
Integer to Text node’s integer port.

The Convert Integer to Text node takes the value in its integer port (a number)
and converts it to text. That’s because the next node, Write to Console, only works
with text, not numbers.

The final node, Write to Console, prints the count to the console.

In summary:

• Fire Periodically node fires events every 1 second, which flow along the cable
into Count.

• Count receives the events and outputs them plus their corresponding numbers.

• Convert Integer to Text converts the numbers to text and sends the events
and numbers into Display Console Window

• Display Console Window creates a blank window and displays the numbers
upon it, every one second.

Revised June 29, 2013

3 Making compositions Page 6 of 20

3.1 Nodes

Each node in a composition does a small task, like counting numbers or writing to
the console or periodically firing events. Nodes are building blocks. You can put them
together in all sorts of ways.

3.1.1 Interacting with the environment

Some nodes interact with the world outside the composition – files, networks, and
devices.

Nodes that bring information into the composition from the outside world are called
providers. An example of a provider is the Read from Console node, which reads
words typed in the console.

Nodes that affect the outside world are called consumers. An example of a consumer
is the Write to Console node, which writes a message to the console.

A node can be a provider, a consumer, both, or neither. If it’s neither, then it’s called
a processor. Examples of processors are the Add node, which sums its inputs, and
the Fire Periodically node, which fires events whenever a timer goes off.

Vuo’s interaction modes are dis-
tinct from Quartz Composer’s
execution modes with the same
names. In Quartz Composer, a
patch’s status as a provider, pro-
cessor, or consumer not only in-
dicates how it interacts with the
outside world, but also controls
when it executes and whether
it can be embedded in macro
patches.

Note for
Quartz Composer users

3.1.2 Storing information

Some nodes have state. They remember information from previous times they were
executed. An example of a stateful node is Count. If a Count node is told to
increment, its state (the count) changes.

A stateless node doesn’t remember anything about previous times it was executed.
If you give it the same inputs, it’ll always give you the same outputs.

Revised June 29, 2013

3 Making compositions Page 7 of 20

3.2 Ports and cables

Nodes talk to each other by sending data and events through cables plugged into
ports. Data and events flow from the output port of one node, through a cable, to
the input port of another (or the same) node. For example, data and events flow from
the count output port of the Count node to the integer input port of the Convert
Integer to Text node and the in0 port of the Add node.

More than one cable can be connected to an output port, but only one cable can be
connected to an input port.

3.2.1 Firing events

Some output ports fire new events. They’re called trigger ports. One example is the
Fire Periodically node’s fired port. Another is the Fire on Start node’s started
port.

3.2.2 Passing data and events between nodes

Revised June 29, 2013

3 Making compositions Page 8 of 20

All cables carry events. An example of a cable that carries an event (and nothing else)
is the cable coming out of the Delay node’s event port.

Some cables also carry data. For example, the cable coming out of the CountChar-
acters node’s count port carries an event plus some data: the character count.

When you connect two ports with a cable, the types of the ports have to match. You
can connect an integer port to an integer port, or a text port to a text port, but you
can’t connect an integer port to a text port. (If you want to convert an integer to text,
use the Convert Integer to Text node.) You can connect a data-and-event output
port to a data-and-event input port, but you can’t connect a data-and-event output
port to an event-only input port. (If you want to convert a data-and-event cable to an
event-only cable, use a Discard Data from Event node.)

(You can connect an event-only output port to a data-and-event input port. That’s
because, as explained below, the port has data in it even if no cable is connected.)

3.2.3 Setting a constant value for a port

Instead of passing data through a cable, you can give a data-and-event input port a
constant value.

A constant value is “constant” because, unlike data coming in from a cable, which can
change from time to time, a constant value remains the same unless you edit it.

If you change a constant value for a node’s port, the node will use the new port value
the next time it executes. Setting a port value won’t cause the node to execute.

Revised June 29, 2013

3 Making compositions Page 9 of 20

3.2.4 Using the default value of a port

If a data-and-event input port isn’t connected to a cable and doesn’t have a constant
value, then it reverts to its default value. The default value for an input port is the
same for all nodes of a given type. For example, the increment port of all Count
nodes defaults to 1.

3.3 Conducting events

When an event flows along a cable and reaches a node, it causes the node to execute.
In all of the examples so far, the node would then transmit the event through its
output ports to downstream nodes. But sometimes a node blocks the event so it
doesn’t flow to downstream nodes.

Nodes that are always conductive will always transmit an event from any input
port to all output ports. Examples of always-conductive nodes are the Count node
and the Delay node.

TODO: vuo.time.delay isn’t always-conductive — its ‘seconds’ port shouldn’t conduct,
right?

Nodes that are semi-conductive may or may not transmit an event to a given output
port. It depends on the type of node, the node’s input data and events, and the node’s
state. Examples of semi-conductive nodes are the Select Input node and the Hold
node.

Nodes that have only trigger output ports, or no output ports at all, will, of course,
never conduct events.

Revised June 29, 2013

3 Making compositions Page 10 of 20

3.3.1 The receptor port

Every node has a built-in event-only input port called the receptor port. The
behavior of this port depends on the type of node.

On some nodes, like Count, the receptor port lets you bypass the work typically done
by the node and just conduct the event. For example, this graph shows how you can
use the receptor port to get the Count node’s current count without incrementing or
decrementing it.

When the Fire Periodically node connected to the Count node’s increment port
fires an event, Write to Console prints the incremented count. When the other Fire
Periodically node, which is connected to the Count node’s receptor port, fires an
event, the count stays the same. Write to Console prints the same count as before.

On other nodes, like Hold, the receptor port is the only input port that conducts
events. The Hold node lets you store a value during one event and use it during later
events. This graph shows how you can use a Hold node to update a value every 1
second and print it every 5 seconds.

When the Fire Periodically node connected to Count executes, the count is trans-
mitted to the Hold node — and stops there. The Write to Console node doesn’t
execute.

When the Fire Periodically node connected to Hold executes, the count stored in
the Hold node travels to the Write to Console node and gets printed.

Revised June 29, 2013

3 Making compositions Page 11 of 20

3.4 Controlling when nodes execute

A composition can be as simple as a straight line of nodes, one executing after the other.
But it doesn’t have to be. A composition can make decisions. It can have feedback
loops. It can execute more than one node at a time. You can create compositions that
use control flow and concurrency.

3.4.1 Switches

A Select Input node lets you pick one of several input values and route it to the
output. The input ports are numbered 0, 1, 2, . . . You pick an input port by passing
its number to the index input port.

A Select Output node lets you route an input value to one of several outputs. Similar
to the Select Input, you pick an output port using the index input port. Vuo’s Select Input node is

similar to Quartz Composer’s
Multiplexer patch. Vuo’s Se-
lect Output node is similar
to Quartz Composer’s Demul-
tiplexer patch.

Note for
Quartz Composer users

Vuo’s Select Input and Select
Output are similar to if/else
or switch/case statements.

(); Note for
text programmers

3.4.2 Feedback loops

You can use a feedback loop to do something repeatedly or iteratively. An iteration
happens each time a new event travels around the feedback loop.

Revised June 29, 2013

3 Making compositions Page 12 of 20

This graph prints a count: 1, 2, 3, 4, . . .

The first time the Fire Periodically node fires an event, the inputs of Add are 0
and 1, and the output is 1. The sum travels along the cable to the Hold node – and
stops there, because Hold doesn’t conduct events through its value port.

The second time the Fire Periodically node fires an event, the inputs of Add are 1
(from the Hold node) and 1. The third time, the inputs are 2 and 1. And so on.

TODO: mark as counter-example

This graph is invalid. That’s because any event from the Fire Periodically node
will get stuck forever traveling in the feedback loop from the Add node’s sum port to
its in0 port. Every feedback loop needs a semi-conductive or never-conductive node
like Hold to block events from looping infinitely.

3.4.3 Executing nodes in parallel

Vuo is a parallelizing compiler. It figures out which parts of your composition are
safe to execute at the same time. It executes those parts concurrently to make your
composition run faster.

In this graph, the two Count nodes are independent of each other, so it’s safe for
them to execute at the same time. When the Fire Periodically node fires an event,
the upper Count node might execute before the lower one, or the lower one might
execute before the upper one, or they might execute at the same time. It doesn’t
matter! What matters is that the Add node waits for input from both of the Count
nodes before it executes.

Revised June 29, 2013

3 Making compositions Page 13 of 20

The Add node executes just once each time Fire Periodically fires an event. The
event branches off to the Count nodes and joins up again at Add.

If the Fire Periodically node fires an event, then fires a second event before the first
has made it through the graph, then the second event waits. Only when the Write
to Console node has finished executing for the first event do the Count nodes begin
executing for the second event.

In this graph, the Add node executes each time either Fire Periodically node fires
an event. If one of the Add node’s inputs is pushed, it doesn’t wait for the other
input. It goes ahead and executes.

If the two Fire Periodically nodes fire an event at nearly the same time, then the
Count nodes can execute in either order or at the same time. But once the first event
reaches the Add node, the second event is not allowed to overtake it. (Otherwise, the
second event could overwrite the data on the cable from Add to Write to Console
before the first event has a chance to reach Write to Console.) The second event
can’t execute Add or Write to Console until the first event is finished.

3.4.4 Executing nodes in the background

This graph shows how you can do some work in the background and be alerted when
it’s done. It prints “Loading. . . ” when the work begins and “Done!” when it finishes.

The work is simulated with a Delay node, which just waits for 3 seconds before
conducting the event to its output port.

Revised June 29, 2013

3 Making compositions Page 14 of 20

The Spin Off Event node is what makes the work run in the background. When an
event reaches the Spin Off Event node, the Spin Off Event node doesn’t conduct
the old event, but it fires a new event.

When the Fire on Start node fires an event, one branch of the event ends at the
Spin Off Event node and the other reaches the in0 port of the Select Input (which
doesn’t wait for input on its in1 port, since that branch of the event is ended) and
goes on to the Write to Console node. Meanwhile, the Spin Off Event node fires
a new event and the Delay node begins executing. When it finishes, the new event
travels on to Count, Select Input, and Write to Console.

3.4.5 Executing nodes at a steady rate

This graph writes a count to console every 5 seconds. The count updates every second.

The Hold node prevents the count from being printed each time it’s updated by the
1-second Fire Periodically node.

(A side note: Every 5 seconds, when the two Fire Periodically nodes fire at nearly
the same time, whether the count will be printed before or after it’s incremented is
unpredictable.)

3.5 Creating and running compositions with the
Vuo Editor

The easiest way to make a composition is in the Vuo Editor. Once you’ve installed
Vuo (see the Quick Start section – TODO: link), you can find the Vuo Editor in your
Applications folder.

Revised June 29, 2013

3 Making compositions Page 15 of 20

3.5.1 Drawing nodes and cables

TODO (editor): screenshot of Node Library with one node class selected

When you create a composition, your starting point is always the Node Library
(Window > Show Node Library). The Node Library shows all the nodes that are
available to you. In the Node Library, you can search for a node by name or keyword.
You can see details about a node, including its documentation and version number.

TODO (build): directory(ies) from which nodes are loaded; what to do if you don’t
see a node – link to section “Installing a node class”

You can add a node to your composition by dragging it from the Node Library to the
canvas. (Or you can double-click on the node in the Node Library.)

You can delete a node by selecting it and hitting Delete.

TODO (editor): screenshot of node with data editor

You can change the constant value for an input port by double-clicking the port, then
entering the new value into the Data Editor that pops up. (Or you can open the
Data Editor by hovering the cursor over the port and hitting Return.) When the
Data Editor is open, press Return to accept the new value or Escape to cancel.

TODO (editor): screenshot of drawing a cable

You can draw a cable by dragging from an output port to a matching input port. (Or
you can drag backwards from an event-only input port to a matching output port.)
When you drag a cable, the ports you can connect it to are highlighted.

You can delete a cable by dragging the end away from the input port and releasing it.
(Or you can select the cable and hit Delete.)

3.5.2 Running and stopping a composition

TODO (editor): screenshot of Run and Stop buttons

You can run a composition by clicking the Run button. (Or go to Run > Run.)

You can stop a composition by clicking the Stop button. (Or go to Run > Stop.)

Revised June 29, 2013

3 Making compositions Page 16 of 20

3.5.3 Exporting compositions

TODO (export): how to export a composition

3.6 Creating compositions with a text editor and
running them with a shell

Sometimes you may want to work with compositions outside of the Vuo Editor. Maybe
you want to write a script that compiles and runs compositions. Or maybe you want
to edit a composition over SSH. Or maybe you just want to peek under the hood and
learn what the Vuo Editor is doing. You can.

3.6.1 Writing a composition in a text editor

Composition files are in Graphviz DOT format, an open format for describing nodes
and edges (cables).

Listing 1: SMSLength.vuo

1 */
2

3 digraph G
4 {
5 DisplayConsoleWindow3 [type="vuo.console.window" label="Display Console Window|<

receptor>receptor\l|<lineToWrite>lineToWrite\l|<typedLine>typedLine\r|<typedWord>
typedWord\r|<typedCharacter>typedCharacter\r" pos="122.5,71" _lineToWrite=""];

6 SelectInput [type="vuo.select.in.text" label="Select Input|<receptor>receptor\l|<index>
index\l|<in0>in0\l|<in1>in1\l|<out>out\r" pos="755.5,226" _index="0" _in0="That's
short enough to text." _in1="That's too long to text."];

7 IsLessThan [type="vuo.math.isLessThan.integer" label="Is Less Than|<receptor>receptor\l
|<a>a\l|b\l|<lessThan>lessThan\r" pos="586,74" _a="160" _b="0"];

Revised June 29, 2013

http://www.graphviz.org/content/dot-language

3 Making compositions Page 17 of 20

8 CountCharacters [type="vuo.text.countCharacters" label="Count Characters|<receptor>
receptor\l|<text>text\l|<count>count\r" pos="376,88" _text=""];

9 DiscardDatafromEvent [type="vuo.type.text.event" label="Discard Data from Event|<
receptor>receptor\l|<dataAndEvent>dataAndEvent\l|<event>event\r" pos="376.5,202" _
dataAndEvent=""];

10

11 DisplayConsoleWindow3:typedLine -> CountCharacters:text;
12 DisplayConsoleWindow3:typedLine -> DiscardDatafromEvent:dataAndEvent;
13 SelectInput:out -> DisplayConsoleWindow3:lineToWrite;
14 IsLessThan:lessThan -> SelectInput:index;
15 CountCharacters:count -> IsLessThan:b;
16 DiscardDatafromEvent:event -> SelectInput:receptor;
17 }

Let’s look at SMSLength.vuo. It declares each of the nodes (Fire on Start,
Read from Console, etc.) followed by each of the cables (Start:started

-> ReadfromConsole:receptor, etc.). For each node, it gives the type (e.g.
vuo.event.fireOnStart) and a label listing all of the node’s ports. The label is hard
to read, but don’t worry about typing it exactly right — you can just copy and paste
the node declaration from the output of this command:

Listing 2: Showing all node classes

1 vuo-compile --list-node-classes=dot

For each node, SMSLength.vuo also gives a constant value for each data-and-event
input port that isn’t connected to a cable. For example, the a port of the Is Less
Than node has a constant value of 160.

For each cable, SMSLength.vuo gives the starting port and the ending port. For
example, Start:started -> ReadfromConsole:receptor declares a cable extending
from the started output port of the Fire on Start node to the receptor input port
of the Read from Console node.

3.6.2 Rendering a composition on the command line

Listing 3: Rendering a composition

1 vuo-render --output-format=pdf --output SMSLength.pdf SMSLength.vuo

Since composition files are in DOT format, you can also render them without Vuo
styling using Graphviz:

Revised June 29, 2013

3 Making compositions Page 18 of 20

Listing 4: Rendering a Vuo composition using Graphviz

1 dot -Grankdir=LR -Nshape=Mrecord -Nstyle=filled -Tpng -oSMSLength.png SMSLength.vuo

3.6.3 Building a composition on the command line

You can turn a .vuo file into an executable in two steps.

First, compile the .vuo file to a .bc file (LLVM bitcode):

Listing 5: Compiling a Vuo composition

1 vuo-compile --output SMSLength.bc SMSLength.vuo

Then, turn the .bc file into an executable:

Listing 6: Linking a Vuo composition into an executable

1 vuo-link --output SMSLength SMSLength.bc

(These are separate steps because you might use a compiled .vuo file as a subgraph
inside another .vuo file, instead of as a standalone executable.)

You can run the following commands to see more options:

Listing 7: Compiler and linker help

1 vuo-compile --help
2 vuo-link --help

3.6.4 Running a composition on the command line

Run the executable you created just like any other executable:

Listing 8: Running a Vuo composition

1 ./SMSLength

Revised June 29, 2013

4 Adding node classes to your Node Library Page 19 of 20

3.6.5 Running a composition inside a C/C++/Objective-C
program

TODO: building a graph to .bc, linking your code with that .bc, and calling the
graph’s main function

3.6.6 Dynamically compiling and running compositions inside
a C/C++/Objective-C program

TODO: explain programmatically invoking the compiler and using our wrapper around
LLVM’s ExecutionEngine->getPointerToFunction()

4 Adding node classes to your Node Li-
brary

Node class is the technical term for “type of node”. Vuo comes with a built-in set of
node classes, all of which are listed in the Node Library in the Vuo Editor. A node
class is like a blueprint or cookie cutter for creating nodes. You can create a node by
picking a node class from the Node Library and dragging it onto the Canvas.

There are many reasons that you might want to add node classes to your, or someone
else’s, Node Library:

• You find yourself making the same subgraph over and over in different composi-
tions. You want to make it once and reuse it.

• You made a cool subgraph that you want to share, so other Vuo users can add
it to their Node Library.

• You want to create node classes as a front end or wrapper to let Vuo users use
an existing library.

First, let’s talk about how to install a node class created by someone else. Then we’ll
talk about creating a node class of your own.

Revised June 29, 2013

4 Adding node classes to your Node Library Page 20 of 20

4.1 Installing a node class

A node class is distributed as a .bc (LLVM bitcode) file. To install a node class, just
place the .bc file in one of these folders:

• In your home folder, go to Library > Application Support > Vuo > Modules.

– On Mac OS X 10.7 and above, the Library folder is hidden by default. To
find it, go to Finder, then hold down the Option key, go to the Go menu,
and pick Library.

• In the top-level folder on your hard drive, go to Library > Application Support
> Vuo > Modules.

You’ll typically want to use the first option, since yours will be the only user account
on your computer that should have access to the node class. Use the second option
only if you have administrative access and you want all users on the computer to have
access to the node class.

You can organize the files in subfolders inside your nodes folder any way you want.
Vuo will search the nodes folder and all of its subfolders for node classes.

4.2 Creating a node class in the Vuo Editor

TODO (subgraphs)

Revised June 29, 2013

	Vuo and You
	Quick start
	Install Vuo
	The easy way: Getting the Vuo package
	The hard way: Building Vuo from source code

	Create a composition
	Run the composition
	Export the composition to a standalone executable

	Making compositions
	Nodes
	Interacting with the environment
	Storing information

	Ports and cables
	Firing events
	Passing data and events between nodes
	Setting a constant value for a port
	Using the default value of a port

	Conducting events
	The receptor port

	Controlling when nodes execute
	Switches
	Feedback loops
	Executing nodes in parallel
	Executing nodes in the background
	Executing nodes at a steady rate

	Creating and running compositions with the Vuo Editor
	Drawing nodes and cables
	Running and stopping a composition
	Exporting compositions

	Creating compositions with a text editor and running them with a shell
	Writing a composition in a text editor
	Rendering a composition on the command line
	Building a composition on the command line
	Running a composition on the command line
	Running a composition inside a C/C++/Objective-C program
	Dynamically compiling and running compositions inside a C/C++/Objective-C program

	Adding node classes to your Node Library
	Installing a node class
	Creating a node class in the Vuo Editor

