
An Introduction to Vuo

Vuo 0.4.5

Contents

1 Vuo and You 3

2 Quick start 3

2.1 Install Vuo . 3

2.1.1 The easy way: Getting the Vuo package 4

2.1.2 The hard way: Building Vuo from source code 4

2.2 Create a composition . 4

2.3 Run the composition . 4

2.4 Export the composition to a standalone executable 4

1

Contents Page 2 of 21

3 Creating Compositions — The Parts and Pieces 5

3.1 Nodes . 6

3.1.1 Node names . 6

3.1.2 Types of information and Type Converters. 6

3.1.3 Interacting with the environment 7

3.1.4 Storing information . 7

3.2 Ports and cables . 8

3.2.1 Firing events . 8

3.2.2 Passing data and events between nodes 8

3.2.3 Setting a constant value for a port 9

3.2.4 Using the default value of a port 10

3.3 Conducting events . 10

3.3.1 The refresh port . 11

3.4 Controlling when nodes execute . 12

3.4.1 Switches . 12

3.4.2 Feedback loops . 12

3.4.3 Executing nodes in parallel . 13

3.4.4 Executing nodes in the background 15

3.4.5 Executing nodes at a steady rate 15

3.5 Creating and running compositions with the Vuo Editor 16

3.5.1 Drawing nodes and cables . 16

3.5.2 Running and stopping a composition 17

3.5.3 Exporting compositions . 17

3.6 Creating compositions with a text editor and running them with a shell 17

3.6.1 Writing a composition in a text editor 17

3.6.2 Rendering a composition on the command line 19

3.6.3 Building a composition on the command line 19

3.6.4 Running a composition on the command line 20

3.6.5 Running a composition inside a C/C++/Objective-C program 20

3.6.6 Dynamically compiling and running compositions inside a
C/C++/Objective-C program 20

Revised August 14, 2013

2 Quick start Page 3 of 21

4 Adding node classes to your Node Library 20

4.1 Installing a node class . 21

4.2 Creating a node class in the Vuo Editor 21

1 Vuo and You

Vuo is an environment for creating interactive multimedia software. It’s designed for
multimedia artists and other creative people who want to combine graphics, audio,
special effects, and interactivity into unique compositions.

Making a Vuo composition is easy. You drag and drop building blocks (“nodes”) onto
the canvas. You draw lines (“cables”) to connect them. Then you hit the Run button.
See, hear, and interact with your composition.

Learning Vuo is easy. Just master one simple concept: information flowing through
cables. (In case you were wondering, “Vuo” is the Finnish word for “flow”.) The Vuo
website provides tutorials, examples, and forums to help you learn.

With Vuo, you can. . .

• Modify your composition while it’s running – perfect for experimentation and
live improvisation.

• Build apps for iOS, Mac, Windows, and Linux.
• Make your own reusable, shareable nodes.
• Embed your composition inside other software.

Welcome to Vuo. Soon you’ll be able to create interactive art and music, animations,
visualizations, games, special effects, and more.

2 Quick start

2.1 Install Vuo

TODO (build, website): how to download and install Vuo

Revised August 14, 2013

2 Quick start Page 4 of 21

2.1.1 The easy way: Getting the Vuo package

2.1.2 The hard way: Building Vuo from source code

2.2 Create a composition

TODO (editor): Screen shots

Let’s make a simple composition. It will just pop up a window with the text “Hello
World!”

1. Open the Vuo Editor application in your Applications folder and the Vuo Editor
will appear. The Node Library will be on the left, and a blank canvas will be on
the right.

2. In the Node Library, find the Fire on Start node. Drag it onto the canvas.
3. In the Node Library, find the Display Console Window node. Drag it onto

the canvas.
4. Draw a cable from the started port of the Fire on Start node to the refresh

port of the Display Console Window node. (To draw a cable, click and hold
over the port you’d like to start from, then drag the cable to the port you’d like
to connect to, and let go.)

5. Double-click on the lineToWrite port of the Display Console Window node.
This pops up a text box.

6. Type “Hello world!” in the text box and hit Return. This closes the text box.

2.3 Run the composition

TODO (editor): Screenshots

Now let’s run your composition.

1. Click the Run button (or go to Run > Run).
2. When you’re finished admiring the “Hello world!” text, click the Stop button

(or go to Run > Stop).

2.4 Export the composition to a standalone exe-
cutable

TODO (export): how to export a composition

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 5 of 21

3 Creating Compositions — The Parts
and Pieces

TO DO (editor): Show image of the composition counting.

This is a composition that counts. It displays a blank window, then, every one
second, it writes a number upon the window: 1, 2, 3, 4, . . . etc. Let’s take a closer
look.

Fire Periodically, Count, and Display Console Window are nodes. Each node
performs its own task. Information always flows from the left side to the right side
of a node. Inputs are on the left, outputs on the right. integer → text is a type
converter; its job is to convert (or translate) information from one type to another.

This composition begins with the Fire Periodically node and ultimately flows to
the Display Console Window node. Information travels between nodes by exiting
output ports, flowing through cables, and entering input ports.

A node in Vuo is analogous to
a patch in Quartz Composer.
Unlike Quartz Composer, which
typically executes each patch
once per video frame, nodes in
Vuo can be executed whenever
they receive an event — whether
it’s 60 per second, 44,100 per
second, or 1 per year.

Note for
Quartz Composer users

A node in Vuo is analogous to
a class instance method that
takes a list of inputs and returns
a list of outputs.

(); Note for
text programmersThe Fire Periodically node’s only task is to tell other nodes when it’s time to

perform their function. It does this by “firing” events out of its fired port. (See the
section on firing events for more information.) How often it fires an event is dictated
by the value present at its seconds port. It sends events out its fired port, then
along the cable to the Count node’s increment port.

When an event from the Fire Periodically node flows through the cable and hits the
Count node, it tells Count that it’s time to execute. The Count node keeps track
of a count. When an event hits its increment port, the node adds 1 to its count. The
count starts out at 0, becomes 1 after the first event, 2 after the second event, and so
on. The Count node sends the new count and the event out its count port, along
the cable, to the integer port of the integer → text type converter.

The integer → text type converter takes the value in its integer port (a number
in binary format) and converts it to text. That’s because the next node, Display
Console Window, only works with text, not numbers. Type converters appear

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 6 of 21

automatically when two nodes that are using different formats of information are
linked together.

The final node, Display Console Window, creates a blank white window and writes
the count upon it.

In summary:

• Fire Periodically node fires events every 1 second, which flow along the cable
into Count.

• Count receives the events and outputs them plus their corresponding numbers.

• integer → text converts the numbers to text and sends the events and numbers
into Display Console Window

• Display Console Window creates a blank window and displays the numbers
upon it, every one second.

3.1 Nodes

Each node performs a task, like counting numbers or displaying a window or periodi-
cally firing events. Nodes are your tools for creating, they’re the building blocks of
compositions.

3.1.1 Node names

Each node has 2 names, a title and a class name. The title is a quick description of a
nodes’ function, it’s the most prominent name written on a node. The class name is
a categorical name that reveals specific information about a node, it appears directly
below the title name on a node. Let’s use the Count node as an example. “Count” is
the title name, which reveals that the node performs the function of counting. The
class name is: vuo.math.count.integer. The class name reveals the following: “Vuo”
created it, “math” is the general function, “count” is the specific function (and title
name), and “integer” is the type of information it works / communicates with.

TO DO: Add screenshot of count node.

3.1.2 Types of information and Type Converters.

TO DO: explain how type converters function.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 7 of 21

3.1.3 Interacting with the environment

Some nodes interact with the world outside the composition – files, networks, and
devices.

Nodes that bring information into the composition from the outside world and/or
affect the outside world are called interface nodes. An example of an interface node
is the Get Mouse node, which outputs the position and clicks of the mouse. Another
example is the Display Console Window node, which reads text typed in a console
window and writes text to that window.

Instead of Vuo’s interface and
non-interface nodes, Quartz
Composer has an execution
mode for each patch: provider,
consumer, or processor. A
patch’s execution mode not only
indicates how it interacts with
the outside world, but also
controls when it executes and
whether it can be embedded in
macro patches.

Note for
Quartz Composer users

3.1.4 Storing information

Some nodes have state. They remember information from previous times they were
executed. An example of a stateful node is Count. If a Count node is told to
increment, its state (the count) changes.

A stateless node doesn’t remember anything about previous times it was executed.
If you give it the same inputs, it’ll always give you the same outputs.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 8 of 21

3.2 Ports and cables

Nodes talk to each other by sending data and events through cables plugged into
ports. Data and events flow from the output port of one node, through a cable, to
the input port of another (or the same) node. For example, data and events flow from
the count output port of the Count node to the integer input port of the Convert
Integer to Text node and the in0 port of the Add node.

More than one cable can be connected to an output port, but only one cable can be
connected to an input port.

3.2.1 Firing events

Some output ports fire new events. They’re called trigger ports. One example is the
Fire Periodically node’s fired port. Another is the Fire on Start node’s started
port.

3.2.2 Passing data and events between nodes

All cables carry events. An example of a cable that carries an event (and nothing else)
is the cable into the the Count node’s increment port.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 9 of 21

Some cables also carry data. For example, the cable coming out of the CountChar-
acters node’s count port carries an event plus some data: the character count.

When you connect two ports with a cable, the types of the ports have to match. You
can connect an integer port to an integer port, or a text port to a text port, but you
can’t connect an integer port to a text port. (If you want to convert an integer to text,
use the Convert Integer to Text node.) You can connect a data-and-event output
port to a data-and-event input port, but you can’t connect a data-and-event output
port to an event-only input port. (If you want to convert a data-and-event cable to an
event-only cable, use a Discard Data from Event node.)

(You can connect an event-only output port to a data-and-event input port. That’s
because, as explained below, the port has data in it even if no cable is connected.)

3.2.3 Setting a constant value for a port

Instead of passing data through a cable, you can give a data-and-event input port a
constant value.

A constant value is “constant” because, unlike data coming in from a cable, which can
change from time to time, a constant value remains the same unless you edit it.

If you change a constant value for a node’s port, the node will use the new port value
the next time it executes. Setting a port value won’t cause the node to execute.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 10 of 21

3.2.4 Using the default value of a port

If a data-and-event input port isn’t connected to a cable and doesn’t have a constant
value, then it reverts to its default value. The default value for an input port is the
same for all nodes of a given type. For example, the increment port of all Count
nodes defaults to 1.

3.3 Conducting events

When an event flows along a cable and reaches a node, it causes the node to execute.
In all of the examples so far, the node would then transmit the event through its
output ports to downstream nodes. But sometimes a node blocks the event so it
doesn’t flow to downstream nodes.

Nodes that are always conductive will always transmit an event from any input
port to all output ports. Examples of always-conductive nodes are the Count node
and the Get Image node.

Nodes that are semi-conductive may or may not transmit an event to a given output
port. It depends on the type of node, the node’s input data and events, and the node’s
state. Examples of semi-conductive nodes are the Select Input node and the Hold
node.

Nodes that have only trigger output ports, or no output ports at all, will, of course,
never conduct events.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 11 of 21

3.3.1 The refresh port

Every node has a built-in event-only input port called the refresh port. The behavior
of this port depends on the type of node.

On some nodes, like Count, the refresh port lets you bypass the work typically done
by the node and just conduct the event. For example, this composition shows how you
can use the refresh port to get the Count node’s current count without incrementing
or decrementing it.

When the Fire Periodically node connected to the Count node’s increment port
fires an event, Write to Console prints the incremented count. When the other Fire
Periodically node, which is connected to the Count node’s refresh port, fires an
event, the count stays the same. Write to Console prints the same count as before.

On other nodes, like Hold, the refresh port is the only input port that conducts
events. The Hold node lets you store a value during one event and use it during later
events. This composition shows how you can use a Hold node to update a value every
1 second and print it every 5 seconds.

When the Fire Periodically node connected to Count executes, the count is trans-
mitted to the Hold node — and stops there. The Write to Console node doesn’t
execute.

When the Fire Periodically node connected to Hold executes, the count stored in
the Hold node travels to the Write to Console node and gets printed.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 12 of 21

3.4 Controlling when nodes execute

A composition can be as simple as a straight line of nodes, one executing after the other.
But it doesn’t have to be. A composition can make decisions. It can have feedback
loops. It can execute more than one node at a time. You can create compositions that
use control flow and concurrency.

3.4.1 Switches

A Select Input node lets you select a value from different input ports and route it to
the output. When the Select Input node executes, it looks at the number present at
the index port and outputs the value found at the corresponding port below it. For
example, if the value of “0” is present at the index port, whatever value is present at
the in0 port will be outputted.

A Select Output node lets you route an input value to one of several outputs. Similar
to the Select Input, you pick an output port using the index input port. Vuo’s Select Input node is

similar to Quartz Composer’s
Multiplexer patch. Vuo’s Se-
lect Output node is similar
to Quartz Composer’s Demul-
tiplexer patch.

Note for
Quartz Composer users

Vuo’s Select Input and Select
Output are similar to if/else
or switch/case statements.

(); Note for
text programmers

3.4.2 Feedback loops

You can use a feedback loop to do something repeatedly or iteratively. An iteration
happens each time a new event travels around the feedback loop.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 13 of 21

This composition prints a count: 1, 2, 3, 4, . . .

The first time the Fire Periodically node fires an event, the inputs of Add are 0
and 1, and the output is 1. The sum travels along the cable to the Hold node – and
stops there, because Hold doesn’t conduct events through its value port.

The second time the Fire Periodically node fires an event, the inputs of Add are 1
(from the Hold node) and 1. The third time, the inputs are 2 and 1. And so on.

TODO: mark as counter-example

This composition is invalid. That’s because any event from the Fire Periodically
node will get stuck forever traveling in the feedback loop from the Add node’s sum
port to its in0 port. Every feedback loop needs a semi-conductive or never-conductive
node like Hold to block events from looping infinitely.

3.4.3 Executing nodes in parallel

Vuo is a parallelizing compiler. It figures out which parts of your composition are
safe to execute at the same time. It executes those parts concurrently to make your
composition run faster.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 14 of 21

In this composition, the two Count nodes are independent of each other, so it’s safe
for them to execute at the same time. When the Fire Periodically node fires an
event, the upper Count node might execute before the lower one, or the lower one
might execute before the upper one, or they might execute at the same time. It doesn’t
matter! What matters is that the Add node waits for input from both of the Count
nodes before it executes.

The Add node executes just once each time Fire Periodically fires an event. The
event branches off to the Count nodes and joins up again at Add.

If the Fire Periodically node fires an event, then fires a second event before the
first has made it through the composition, then the second event waits. Only when
the Write to Console node has finished executing for the first event do the Count
nodes begin executing for the second event.

In this composition, the Add node executes each time either Fire Periodically node
fires an event. If one of the Add node’s inputs is pushed, it doesn’t wait for the other
input. It goes ahead and executes.

If the two Fire Periodically nodes fire an event at nearly the same time, then the
Count nodes can execute in either order or at the same time. But once the first event
reaches the Add node, the second event is not allowed to overtake it. (Otherwise, the
second event could overwrite the data on the cable from Add to Write to Console
before the first event has a chance to reach Write to Console.) The second event
can’t execute Add or Write to Console until the first event is finished.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 15 of 21

3.4.4 Executing nodes in the background

This example shows how a composition can do some work in the background (asyn-
chronously). It displays one image while downloading another image from the internet,
then displays the second image.

The Spin Off Event node is what allows the image to download in the background.
When an event reaches the Spin Off Event node, the Spin Off Event node fires a
new event. Because it’s a new event instead of the same old event, other parts of the
composition can go on executing without having to wait on the event.

When the Fire on Start node fires an event, the event travels to the Spin Off Event
node (where it stops) and through the upper Get Image node, Select Latest, Place
Image in Scene, and Render Scene to Window. All of these nodes execute
without waiting for the lower Get Image node. Meanwhile, the Spin Off Event
node fires a new event, the lowerGet Image node downloads the image, and eventually
the new event travels onward through Select Latest, Place Image in Scene, and
Render Scene to Window.

3.4.5 Executing nodes at a steady rate

This composition writes a count to console every 5 seconds. The count updates every
second.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 16 of 21

The Hold node prevents the count from being printed each time it’s updated by the
1-second Fire Periodically node.

(A side note: Every 5 seconds, when the two Fire Periodically nodes fire at nearly
the same time, whether the count will be printed before or after it’s incremented is
unpredictable.)

3.5 Creating and running compositions with the
Vuo Editor

The easiest way to make a composition is in the Vuo Editor. Once you’ve installed
Vuo (see the Quick Start section – TODO: link), you can find the Vuo Editor in your
Applications folder.

3.5.1 Drawing nodes and cables

TODO (editor): screenshot of Node Library with one node class selected

When you create a composition, your starting point is always the Node Library
(Window > Show Node Library). The Node Library shows all the nodes that are
available to you. In the Node Library, you can search for a node by name or keyword.
You can see details about a node, including its documentation and version number.

TODO (build): directory(ies) from which nodes are loaded; what to do if you don’t
see a node – link to section “Installing a node class”

You can add a node to your composition by dragging it from the Node Library to the
canvas. (Or you can double-click on the node in the Node Library.)

You can delete a node by selecting it and hitting Delete.

TODO (editor): screenshot of node with input editor

You can change the constant value for an input port by double-clicking the port, then
entering the new value into the input editor that pops up. (Or you can open the
input editor by hovering the cursor over the port and hitting Return.) When the
input editor is open, press Return to accept the new value or Escape to cancel.

TODO (editor): screenshot of drawing a cable

You can draw a cable by dragging from an output port to a matching input port. (Or
you can drag backwards from an event-only input port to a matching output port.)
When you drag a cable, the ports you can connect it to are highlighted.

You can delete a cable by dragging the end away from the input port and releasing it.
(Or you can select the cable and hit Delete.)

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 17 of 21

3.5.2 Running and stopping a composition

TODO (editor): screenshot of Run and Stop buttons

You can run a composition by clicking the Run button. (Or go to Run > Run.)

You can stop a composition by clicking the Stop button. (Or go to Run > Stop.)

3.5.3 Exporting compositions

TODO (export): how to export a composition

3.6 Creating compositions with a text editor and
running them with a shell

Sometimes you may want to work with compositions outside of the Vuo Editor. Maybe
you want to write a script that compiles and runs compositions. Or maybe you want
to edit a composition over SSH. Or maybe you just want to peek under the hood and
learn what the Vuo Editor is doing. You can.

3.6.1 Writing a composition in a text editor

Composition files are in Graphviz DOT format, an open format for describing nodes
and edges (cables).

Revised August 14, 2013

http://www.graphviz.org/content/dot-language

3 Creating Compositions — The Parts and Pieces Page 18 of 21

Listing 1: CheckSMSLength.vuo

1 */
2

3 digraph G
4 {
5 DisplayConsoleWindow3 [type="vuo.console.window" label="Display Console Window|<refresh

>refresh\l|<lineToWrite>lineToWrite\l|<typedLine>typedLine\r|<typedWord>typedWord\
r|<typedCharacter>typedCharacter\r" pos="122.5,71" _lineToWrite=""];

6 SelectInput [type="vuo.select.in.text" label="Select Input|<refresh>refresh\l|<index>
index\l|<in0>in0\l|<in1>in1\l|<out>out\r" pos="755.5,226" _index="0" _in0="\"That'
s short enough to text.\"" _in1="\"That's too long to text.\""];

7 IsLessThan [type="vuo.math.isLessThan.integer" label="Is Less Than|<refresh>refresh\l|<
a>a\l|b\l|<lessThan>lessThan\r" pos="586,74" _a="160" _b="0"];

8 CountCharacters [type="vuo.text.countCharacters" label="Count Characters|<refresh>
refresh\l|<text>text\l|<count>count\r" pos="376,88" _text=""];

9 DiscardDatafromEvent [type="vuo.type.text.event" label="Discard Data from Event|<
refresh>refresh\l|<dataAndEvent>dataAndEvent\l|<event>event\r" pos="376.5,202" _
dataAndEvent=""];

10

11 DisplayConsoleWindow3:typedLine -> CountCharacters:text;
12 DisplayConsoleWindow3:typedLine -> DiscardDatafromEvent:dataAndEvent;
13 SelectInput:out -> DisplayConsoleWindow3:lineToWrite;
14 IsLessThan:lessThan -> SelectInput:index;
15 CountCharacters:count -> IsLessThan:b;
16 DiscardDatafromEvent:event -> SelectInput:refresh;
17 }

Let’s look at CheckSMSLength.vuo. It declares each of the nodes (Fire on
Start, Read from Console, etc.) followed by each of the cables (Start:started

-> ReadfromConsole:refresh, etc.). For each node, it gives the type (e.g.
vuo.event.fireOnStart) and a label listing all of the node’s ports. The label is hard
to read, but don’t worry about typing it exactly right — you can just copy and paste
the node declaration from the output of this command:

Listing 2: Showing all node classes

1 vuo-compile --list-node-classes=dot

For each node, CheckSMSLength.vuo also gives a constant value for each data-and-
event input port that isn’t connected to a cable. For example, the a port of the Is
Less Than node has a constant value of 160.

For each cable, CheckSMSLength.vuo gives the starting port and the ending port. For
example, Start:started -> ReadfromConsole:refresh declares a cable extending
from the started output port of the Fire on Start node to the refresh input port
of the Read from Console node.

Revised August 14, 2013

3 Creating Compositions — The Parts and Pieces Page 19 of 21

3.6.2 Rendering a composition on the command line

Listing 3: Rendering a composition

1 vuo-render --output-format=pdf --output CheckSMSLength.pdf CheckSMSLength.vuo

Since composition files are in DOT format, you can also render them without Vuo
styling using Graphviz:

Listing 4: Rendering a Vuo composition using Graphviz

1 dot -Grankdir=LR -Nshape=Mrecord -Nstyle=filled -Tpng -oSMSLength.png CheckSMSLength.
vuo

3.6.3 Building a composition on the command line

You can turn a .vuo file into an executable in two steps.

First, compile the .vuo file to a .bc file (LLVM bitcode):

Listing 5: Compiling a Vuo composition

1 vuo-compile --output CheckSMSLength.bc CheckSMSLength.vuo

Then, turn the .bc file into an executable:

Listing 6: Linking a Vuo composition into an executable

1 vuo-link --output CheckSMSLength CheckSMSLength.bc

(These are separate steps because you might use a compiled .vuo file as a subcomposition
inside another .vuo file, instead of as a standalone executable.)

You can run the following commands to see more options:

Listing 7: Compiler and linker help

1 vuo-compile --help
2 vuo-link --help

Revised August 14, 2013

4 Adding node classes to your Node Library Page 20 of 21

3.6.4 Running a composition on the command line

Run the executable you created just like any other executable:

Listing 8: Running a Vuo composition

1 ./CheckSMSLength

3.6.5 Running a composition inside a C/C++/Objective-C
program

TODO: building a composition to .bc, linking your code with that .bc, and calling the
composition’s main function

3.6.6 Dynamically compiling and running compositions inside
a C/C++/Objective-C program

TODO: explain programmatically invoking the compiler and using our wrapper around
LLVM’s ExecutionEngine->getPointerToFunction()

4 Adding node classes to your Node Li-
brary
Node class is the technical term for “type of node”. Vuo comes with a built-in set of
node classes, all of which are listed in the Node Library in the Vuo Editor. A node
class is like a blueprint or cookie cutter for creating nodes. You can create a node by
picking a node class from the Node Library and dragging it onto the Canvas.

There are many reasons that you might want to add node classes to your, or someone
else’s, Node Library:

• You find yourself making the same subcomposition over and over in different
compositions. You want to make it once and reuse it.

• You made a cool subcomposition that you want to share, so other Vuo users can
add it to their Node Library.

• You want to create node classes as a front end or wrapper to let Vuo users use
an existing library.

First, let’s talk about how to install a node class created by someone else. Then we’ll
talk about creating a node class of your own.

Revised August 14, 2013

4 Adding node classes to your Node Library Page 21 of 21

4.1 Installing a node class

A node class is distributed as a .bc (LLVM bitcode) file. To install a node class, just
place the .bc file in one of these folders:

• In your home folder, go to Library > Application Support > Vuo > Modules.

– On Mac OS X 10.7 and above, the Library folder is hidden by default. To
find it, go to Finder, then hold down the Option key, go to the Go menu,
and pick Library.

• In the top-level folder on your hard drive, go to Library > Application Support
> Vuo > Modules.

You’ll typically want to use the first option, since yours will be the only user account
on your computer that should have access to the node class. Use the second option
only if you have administrative access and you want all users on the computer to have
access to the node class.

You can organize the files in subfolders inside your nodes folder any way you want.
Vuo will search the nodes folder and all of its subfolders for node classes.

4.2 Creating a node class in the Vuo Editor

TODO (subcompositions)

Revised August 14, 2013

	Vuo and You
	Quick start
	Install Vuo
	The easy way: Getting the Vuo package
	The hard way: Building Vuo from source code

	Create a composition
	Run the composition
	Export the composition to a standalone executable

	Creating Compositions — The Parts and Pieces
	Nodes
	Node names
	Types of information and Type Converters.
	Interacting with the environment
	Storing information

	Ports and cables
	Firing events
	Passing data and events between nodes
	Setting a constant value for a port
	Using the default value of a port

	Conducting events
	The refresh port

	Controlling when nodes execute
	Switches
	Feedback loops
	Executing nodes in parallel
	Executing nodes in the background
	Executing nodes at a steady rate

	Creating and running compositions with the Vuo Editor
	Drawing nodes and cables
	Running and stopping a composition
	Exporting compositions

	Creating compositions with a text editor and running them with a shell
	Writing a composition in a text editor
	Rendering a composition on the command line
	Building a composition on the command line
	Running a composition on the command line
	Running a composition inside a C/C++/Objective-C program
	Dynamically compiling and running compositions inside a C/C++/Objective-C program

	Adding node classes to your Node Library
	Installing a node class
	Creating a node class in the Vuo Editor

